If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-105p^2+24p+8=0
a = -105; b = 24; c = +8;
Δ = b2-4ac
Δ = 242-4·(-105)·8
Δ = 3936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3936}=\sqrt{16*246}=\sqrt{16}*\sqrt{246}=4\sqrt{246}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-4\sqrt{246}}{2*-105}=\frac{-24-4\sqrt{246}}{-210} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+4\sqrt{246}}{2*-105}=\frac{-24+4\sqrt{246}}{-210} $
| 3t-6=2t+6 | | y′′+0.4y′+0.04y=0 | | x^2+0.013x-0.000012=0 | | 3xX(5xX)=32 | | x^2+0.0022x-0.000012=0 | | 7=q-10 | | 3(p-5)=2(5p-11) | | 11=15-s | | 22=j+15 | | 2=10-4v | | 7xx10=50 | | 1/4x+4=4x+5 | | 3x+0=4x+5 | | -4x+0=4x+5 | | b/36=7/6 | | 1x+-5=4x+5 | | 3/b=11 | | -4x+4=4x+5 | | 6=17-w | | 5(x+7)+1-x=63+3 | | 2x4=6x | | 3=3(x-10) | | 4d-3d-8d=0 | | (3x–40)·2=x | | 32/13=43/x | | 15/216=22/x | | 22/30=33/x | | 64/82=x/62 | | 12xx=-180 | | 82/64=x/62 | | Z=X-M/s=20/10 | | 82/64=62/x |